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Evaluation of Scheduling Methods for Multiple Runways
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Several scheduling strategies are analyzed to determine the most efficient means of scheduling aircraft when
multiple runways are operational and the airport is operating at different utilization rates. Simulation data are
compared for two- and three-runway scenarios to results from queuing theory for an M/D/n queue. The direction
taken, however, is not to do a steady-state, or equilibrium, analysis because this is not the case during a rush
period at a typical airport. Instead, a transient analysis of the delay per aircraft is performed. It is shown that the
scheduling strategy that reduces the delay depends on the density of the arrival traffic. For light traffic, scheduling
aircraft to their preferred runways is sufficient; however, as the arrival rate increases, it becomes more important
to separate traffic by weight class. Significant delay reduction is realized when aircraft that belong to the heavy
and small weight classes are sent to separate runways with large aircraft put into the best landing slot.

Introduction

HE analysis of aircraft scheduling techniques for airports with

multiple runways is becoming more important with the evolu-
tion in the design of new airports, such as Denver International, that
have the capability to land several aircraft independently on sev-
eral runways. Therefore, new techniques for scheduling to multiple
runways are needed to improve on the traditional first-come-first-
serve (FCFS) technique generally employed. New computer-based
tools such as the Center TRACON Automation System (CTAS)
will give air traffic controllers a tool that gives them accurate
aircraft state information and can assist them in their scheduling
duties.! The intent of this paper is to present and compare several
scheduling methods to show the best means to reduce the delay per
aircraft.

In a multiple-runway airport, traffic from different directions is
assigned a preferred runway based on the geometric relation of the
approach geometry to a runway. Previous efforts by Vandevenne
and Lippert? have shown that significant delay reductionis possible
for multiple runways if the aircraftare allowed to cross over without
penalty. Using steady-state queuing theory, Vandevenne and Lippert
show that the delay should be reduced by a factor of approximately
1/ n for n runways when compared to a single runway case. It would
be expected then that 1 — 1/n% of the aircraft would be switching
from their preferred runway. A delay threshold can be added to
reduce the number of crossovers. The delay threshold is a lower
bound on which the delay on the alternate runway must be reduced
for the aircraft to cross to that runway. As a result of that threshold,
there is a drop in the number of crossovers and a corresponding
increase in the delay.

The approach taken in this paper is to study several different
techniques for scheduling aircraft to multiple runways. Numerical
simulation is used to determine the effectiveness of several sim-
ple runway allocations. These results are compared to results from
queuing theory. Because a typical arrival rush at an airport is fairly
short, we are interested in looking at the transientstate of the queue
and how the waiting time or delay evolves during a rush period.
This simulates the queuing dynamics during a rush period at a typ-
ical airport that is initially operating with light arrival traffic. It is
shown that the best method of allocatingrunways when the airportis
operating either near or above capacity is to separate the heavy and
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small aircraft as much as possible. However, if the traffic is light, it
is sufficient to land the aircraft on their preferred runways.

Scheduling Problem

The aircraft scheduling problem can be defined as a procedure
thatis “to plan automatically the most efficient landing order and to
assign optimally spaced landing times to all arrivals, given the times
the aircraftare actually arriving at the Air Route Traffic Control Cen-
ter (ARTCC).”! This definition may sound modest, but there are
some underlying attributes of the scheduling problem that make it
very difficult. The arrival times of the aircraftinto the system are ran-
dom. Over short periods of time, the arrival process can be modeled
as ahomogeneous Poisson process. However, if one were to observe
arrivalsat an airport for an entire day, one would see that the number
of arrivals varies from hour to hour. There are periods of time where
there are very few arrivals and periods of time where the incoming
traffic is heavy enough that the airport is operating at its capacity.

Animportantpointregardingthe arrival schedulingproblemis the
classification of aircraft into different weight classes. The interair-
craft separation between two aircraftis dependenton the respective
weight classes of the aircraft. In practice, we generally deal with
three weight classes that we describe as heavy, large, and small. The
Federal Aviation Administration (FAA) has specified a separation
matrix that gives required minimum distance separations between
these classes of aircraft. These separations arise from the consider-
ation of wake vortices, speed differences, etc. The nominal matrix
used is shown in Table 1.

The matrix in Table 1 may vary depending on winds, weather, etc.
To find the proper separation for a pair of aircraft, one simply goes
to the appropriate row for the leading aircraft, then to the column
for the weight class of the trailing aircraft.

Analytical Models

To predict the amount of delay that an aircraft can expect for
a given traffic mix, arrival rate, and airport capacity, two standard
queuing models are considered. The first model has deterministic
service times, and the second considers service times that are expo-
nentially distributed. Rather than restricting ourselves to a steady-
state analysis, a study of the transientqueue dynamics is performed.
The motivation for doing a transient analysis is that in actual traffic
at hub airports, arrival traffic is concentrated in short periods that
last 60-90 min. As such, the system never reaches a steady-state
condition. There are times where the peak arrival rate of aircraft
will be greater than the runway capacity. The arrival rate preceding
the rush period is usually low enough that the aircraft are typically
not delayed due to the large interarrival times between them, and
so the method of landing aircraft on their preferred runways will be
more than adequate.
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Table1 Separation matrix
in nautical miles

Trail aircraft

Lead aircraft Heavy Large Small

Heavy 4 5 6
Large 3 3 4
Small 3 3 3

Deterministic Service Times

In constructinga mathematicalmodel for the scheduling problem,
we need to make some simplifying assumptions. The first is that the
arrivalsare to be modeled accordingto a homogeneousPoisson pro-
cess with an arrival rate A. The Poisson process has a mean number
of arrivals in the time period [, f + At] equal to AA¢. Furthermore,
the interarrivaltimes of the aircrafthave an exponentialdistribution
with a mean of 1/ A. Itis further assumed that each server has a con-
stant servicetime 7. This queuingsystemis then saidtobe M/ D/n
(Ref. 3), where M denotes that the interarrival times are Markovian
or memoryless, D denotes that the service times are deterministic
or constant,and n servers are operatingin parallel. Also, the servers
are fed by a single queue.

The service time may be taken to be constantby probabilistically
weighting the required separation times within the separation ma-
trix. We assume that the traffic mix (i.e., the relative proportion of
different weight classes) is known and that the probability of an air-
craft entering the queue being a member of a particular weight class
is given by this relative proportion. By assigning a fixed service
time to all aircraft in this manner, it is assumed that any delay re-
sults from the randomness of the arrival times. To calculatea service
time (and, hence, arunway capacity) from the separation matrix, one
only needs to know the traffic mix and the separation matrix. The
average service time is 7y =PT SP,,, where P,, =[Py P, Ps]" is
a vector of the probabilities that the aircraft is a heavy, large, or
small, respectively, and S is the separation matrix. Let u repre-
sent the runway capacity. The capacity of a single runway is then
u =1/ T,.Forexample, if the traffic mixis P,, =[.2 .7 .1]7,andthe
aircrafthave a common landing speed of 150 kn, then 1 =43.5 air-
craft/h and 7; =82.8 s. For analysis purposes, using a constant 7
simplifies the mathematical model significantly. As will be shown,
this assumption does not adversely affect the numerical results.
The constant service time used is a function of the assumed traf-
fic mix and the elements of the separation matrix. An alternate ap-
proach that utilizes random service times is discussed in the next
section.

To analyze the delay buildup during a rush period, one needs to
study the transient probabilities of the queuing process. The time-
varyingequationsare taken from Tijms.* The derivation of the prob-
abilities is based on the following observations: a customer in ser-
vice at time ¢ will have left service at time ¢ + 7. The customers in
the system at the time ¢ + 7, will be those that entered during the
increment 7} as well as those that were in the queue at time ?.

Define A(7;) to be the number of arrivals in the interval
[¢, t + T;]. Furthermore, let N(¢) be the number in the system at
time ¢, and let P;(t) =P[N(t) =] denote the probability that j
customers are in the system at time ¢. The event that there are j
aircraftin the systemis a union of the events that there are j arrivals
when either the servers are either full, empty, or less than full and
the queue is empty or there are j — 1 arrivals when there is a queue
of length 1, etc. Using this detail, we have the following expression
for the probability of the number of aircraft in the system

Pi(1 + T,) =P[A(T) = j| N(1) =0]Py(1)
U...UP[A(T)) =jIN(@) =n]P,(1)
UP[A(T) =j = LIN(@) =n+1]P,+1(1)

U...UP[A(T,)) =0[N(1) =j +nlP;, (1) o))

Because the number of arrivals in the interval [z, ¢ + T,] and the
number in the queue are independent events, the conditional prob-
abilities can be written as

PIA(T,) =m|N(t) =k] = P[A(T,) =m]
= anylm] @

The probability given in Eq. (2) is simply the probability that there
are m Poissonarrivalsin an interval of length 7. Substituting Eq. (2)
into Eq. (1) and simplifying yield
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This gives us an infinite set of equations that can be solved at
discrete times. Setting t =kT, and defining the probability vector,
P(k) =P(kT,) = [Py(k)P,(k)...]", Eq. (3) can be written as the
infinite dimensional difference equation:

P(k) =FP((k - 1)) €Y

where F' is given hereafter for the n =2 case as
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The solution to this set of equations is
P(k) =F*P, (6)

This set can be solved approximately by initializing the time when
the queue is empty (P(0) =[1 0 0 ---]") and choosing a suffi-
ciently large dimension of F such that the significant probabilities
of the system are captured.

Once the probabilities are determined, the mean number in the
systemat any time incrementk can be calculated. The mean number
in the system is defined as

m(ky =Y jP;(k)

j=0

The mean number in the system at any time k may be broken up
into two components, those found in service m, (k) and those in the
queue awaiting service m o (k). Hence,m(k) =m(k) + my(k). The
mean number in service can be found in Ref. 3 to be

n—1 00
D Pty +n Y Pk 7
Jj=0 Jj=n

The first summation in Eq. (7) arises because if the number of cus-
tomers in the system is less than the number of servers, then all
customers are being served. The second summation exists because
if there are more customersin the system than there are servers, then
all servers will be busy. The resulting mean number in the queue is
then

mo(k) =Y _(j = m)P;(k) @®)

Jj=n

After we use Eq. (8) and truncate the upper summation limit to
Npr, where N is the dimension of F used for calculation, the mean
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number in the queue can be calculated. The expected waiting time or
delay as a function of time can be found by simply applying Little’s
formula (see Ref. 3). Mathematically, Little’s formula is L =AW
where L is the length of the queue, A is the arrival rate of customers
into the system, and W is the waiting time in the queue. The waiting
time in the queue then becomes

1 1 &
Wolk) ==mo(k) == (j = mP,(k) ©)

J=n

Exponential Service Times

A second model thathas been used by some authors to analyzethe
arrival scheduling problemis one where the service times are expo-
nentially distributed with a mean equal to the service time calculated
from the separation matrix. A queue that has Poisson arrivals, ex-
ponential service times, and n servers is referred to as an M/ M/n
queue.’ The resulting model gives rise to the Kolomogrov differ-
ential equations, which describe a birth and death process for an n
server queue with a constantarrival rate A; =A for all j and service
rates ;.

The birth and death differential equations’ are then

Pj(t) =A P ()= (A +up)Pi(t) + e Pyyy(t) (10)

where P; (1) is the probability of there being j aircraftin the system,
P;(¢) is the derivative with respect to time of P;(¢), and A; and u ;
are the arrival and servicerates, respectively.In addition, i ; is given
by

ju j=0,1,...,n—1
.f={n” j=n (11)

Because Eq. (10) results in an infinite set of first-order differen-
tial equations, it can be written in the form P(t) = GP(t), with
P(t) =[P, P; ---]. The matrix G in this case is a tri-diagonal ma-
trix of the form (for n =2)

A u 0 0 0
A —(A+p) 2u 0
0 A —+2u) 24 0 (12)

Again, we are only able to approximate the infinite set of differen-
tial equations by a finite set when solving the system numerically.
Hence, one needs to select the dimension of G large enough that the

important features of the queuing dynamics are realized.
The solution to the differentialequation P(t) =GP(t), P(0) =P,
is

P(1) =P, (13)

Once the probabilities are found according to Eq. (13), the mean
number in the queue and, hence, the mean waiting time in the queue
are found using Eq. (9) and replacing k with . A comparison of the
numerical results for the deterministic service time model and the
exponential service time model shows that the exponential model
yields a significantly greater average delay than that experienced
by the deterministic service model. (Note that in Fig. 1, the mean
exponentialservice time is exactly equal to the deterministic service
time.) The reason for this difference is the large standard deviation
of the exponential distribution. Consider an exponential distribu-
tion with rate o. The mean service time is then 1/ a and the standard
deviationis 1/a. Note that for a purely deterministic service time,
the standard deviation is zero. If we consider the service times as
determined by the separation matrix, the standard deviation of ar-
rival traffic can be easily computed. After converting the separation
matrix from distances to speeds using a common approachspeed of
150 kn and the given traffic mix, the average service time is 82.8 s
with a standard deviation of 19.3 s. This is compared to 82.8 s for
the exponential distribution. The large variance of the exponential

Delay, min/ac

. » ;
0 0.5 1 1.5
Time, hrs

Fig. 1 Mean waiting times for M/D/2 and M/M/2 queues (\ =72 air-
craft/h).

distribution introduces a much wider range of service times than
that which occurs in practice. The effect of these service times is to
cause additional buildup in the queue; therefore, additional delay is
introduced into the system that is significantly larger than that ob-
served in simulation. Simulation results presentedin the succeeding
sections validate the hypothesis that the deterministic service time
assumption is a reasonable model for analytical studies, especially
in comparison to the exponential model.

Comparison of Runway Allocation Strategies

Because of the complex nature of scheduling arrival aircraft, sim-
ulation provides a valuable tool to determine the feasibility of a par-
ticular scheduling algorithm. In this section, we discuss the merits
and drawbacks for several runway allocation methods. The two-
runway allocation problem will be discussed, followed by the three-
runway problem. Three different traffic densities will be analyzed
for each problem: a period of light traffic (two-runway case only),
a period of moderately heavy traffic where the airport is operating
near, but below capacity, and a period where the traffic is heavy
enough that the airport is operating above capacity. The purpose is
to show that selection of a given runway allocation method varies
with the arrival rate of aircraft into the airport.

Two-Runway Allocation Problem

The two-runway problem is one that is quite common. Runways
that operate independently of one another have sufficient separation
between their centerlines such that aircraft landing simultaneously
can be treated independently.

It is assumed for all scheduling strategies that the aircraft arrive
in two different streams. Each arrival stream’s estimated times of
arrival (ETA) are modeled by a Poisson distribution with a mean
of A aircraft per hour per runway, which gives a total arrival rate
of 21 aircrafth using the reproductive property of the Poisson pro-
cess. For each arrival stream, there is a preferred runway that an
aircraft desires to land on. Because of the common arrangement of
parallel runways, we will nominally call the runways left and right
or L and R. The arrival direction and, hence, the preferred runway,
was determined by a random draw. The capacity of each runway is
approximately 43.5 aircraft/h using the separation matrix and (for
simplicity) a common approach speed of 150 kn. The traffic mix
is assumed to consist of 70% large aircraft, 20% heavy, and 10%
small (this roughly approximates the traffic mix observed in most
U.S. traffic.) The performanceindex to be consideredis the average
delay of each aircraftbecause minimizing the average delay per air-
craft should result in a maximum throughputin a given time. The
delay per aircraft is measured with respect to its estimated time of
arrival. It is further assumed that each aircraft can be slowed down
as much as needed to meet the minimum spacing requirements of
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the separation matrix. The flight time to both runways is assumed to
be identical. The first aircraft landing on each runway is constrained
to land at its nominal time of arrival. Each arrival period consists
of a fixed number of aircraft and is on average 90 min long, as this
the typical duration of an arrival period at a hub airport. The results
presentedare the average delays for 5000 replications. This number
of replications was chosen to allow the delays to converge and to
obtain a 95% confidence interval that was less than 0.1 min.

Light Traffic

For the light-traffic case, the total arrivalrate is taken to be 32 air-
craft/h (or 16 aircrafth/runway). Each aircraft, on entry into the
system, is placed at the end of the queue. Rearrangement of the
queued aircraft was not performed; therefore, the only options are
either to assign each aircraft to its preferred runway or to let it land
on an alternaterunway. We compared three means of allocatingrun-
ways for the arrival traffic. The first was to land each aircraft on its
preferred runway. This is the easiest scheduling algorithm to imple-
ment because no decision is made to cross runways. Furthermore,
this is a baseline that allows us to later show improvementsin delay
as compared to this algorithm. By constraining the aircraft to land
on their preferred runways, the queue is considered as two sepa-
rate queues, each feeding a particular server. The second method is
to allow an aircraft to switch from its preferred runway whenever
the aircraft’s delay on the alternate runway is less than its delay on
its preferred runway. This plan will be referred to as unconstrained
crossovers. Note that this is equivalentto the case of a single queue
feeding two servers in parallel. The third allocation strategy is to
land the heavy and small aircraft on runways that are designated
for each weight class and to place the large aircraft on the runway
where the delay for it is the smallest. The fourth method, which
is not used in the light-traffic case, attempts to reduce the amount
of crossover traffic. Because crossovers increase the workload on
the controllers, it is desirable to reduce delay without imposing a
significantly higher workload on them. Therefore, this particularal-
gorithm permits the aircraft to cross over to the alternate runway if
one of two conditions were satisfied: 1) the aircraft’s delay on the
alternate runway is less than on the preferred and the sequence was
defined to be favorable or 2) the aircraft’s delay on the alternate run-
way is less than that on its preferred runway by some predetermined
amount. A favorable sequenceis one that tries to group aircraft with
the minimal elements of the separation matrix. For example, a fa-
vorable sequence would be to land a small aircraft ahead of a heavy
aircraft; however, the converse would not be a favorable sequence.

The results of the first three approaches are given in Table 2. The
improvements made by allocatingrunways are 70% better than if the
aircraft were constrained to land on their preferred runways. How-
ever, from an operational point of view, there is no real advantage
for optimizing the landing sequence to reduce the delay per aircraft
because the delay is already small. This is because the average sep-
arations between arrivals are large, hence, there is little tendency for
bunching to occur.

To gain confidence in the simulation, and to compare the validity
of the analytical model of the preceding section, we can compare the
first two cases above to an M/ D/1 and an M/ D/2 queue, respec-
tively. To calculate the expected delay per aircraftover a given time
period, the average value of the waiting time [Eq. (9)] is needed.
The average value of the expected waiting time curve over N service
intervals is then

N

1
N 0 W (k) (14)

k=

Table 2 Simulation results for light traffic and two runways

Average delay, Standard deviation,

Allocation strategy min/aircraft min/aircraft
No crossovers 0.3995 0.1919
Unconstrained crossovers 0.1180 0.0848
Separate heavy/small aircraft 0.1647 0.0898

For the allocation strategies used in Table 2, the first two repre-
sent cases that can be handled analytically using our earlier results.
Using Eq. (14) for an M/D/1 queue with an arrival rate of 16 air-
craft/h and a service time of 82.8 s, the average delay is found to be
0.3955 min/aircraft, which agrees with the no-crossover case. The
unlimited-crossovercase shows the same trend. The predicted delay
using an M/ D/2 queue is 0.1174 min/aircraft, whereas the simula-
tion produced a delay of 0.1180 min/aircraft. These differences are
small and indicate that averaging the simulation over 5000 trials is
adequate for the light-traffic case.

Moderate Traffic

The case where there is moderately heavy traffic allows us to in-
vestigate what happens when the airport is operating under a fairly
high arrival rate, but is still not at its capacity. This allows for fairly
tight bunching to occur, as well as periods where the traffic may be
light for several minutes. It is assumed that the total arrival rate is
72 aircrafth, puttingthe airportat about 84 % capacity.Four different
scheduling algorithms are investigated, which can be summarized
as follows. The first method is to land each aircraft on its preferred
runway, that is, no crossovers allowed. This serves as a baseline
strategy and is used to determine the reduction in delay. The second
strategy allows an aircraft to cross from its preferred runway to the
alternate runway if the aircraft can land at an earlier time. The first
two strategies correspond to the analytical models that are consid-
ered. The strategies where traffic is separated by weight class and
where crossovers are permitted under favorable conditions are also
addressed. Results for these four sequencing strategies are summa-
rized in Table 3.

The first scheduling strategy employed was to restrict each in-
coming aircraft to land on its preferred runway. This is employed
as a baseline to find improvements in the runway balance (i.e., are
the same amount of aircraft landing on each runway?) and in the
delay per aircraft. The aircraft, as stated, entered from the appropri-
ate direction and then were scheduled to the correspondingrunway.
Using an arrival stream consistingof 108 aircraftand averagingover
5000replications,the mean delay was 2.56 min/aircraft. For analyt-
ical purposes, this is modeled by an M/ D/ 1 queue with the arrival
rate equal to 36 aircraft/h and a constant service time of 82.8 s. The
expected delay curve is shown in Fig. 2. Using Eq. (14), we find

Table 3 Simulation results for moderate traffic
and two runways

Average delay,
Allocation strategy min/aircraft % Crossovers
No crossovers 2.5629 0
Separate heavy/small 1.2371 50
Unconstrained crossovers 1.2581 45
Constrained crossovers 1.3660 23

3.5 T T

Waiting Time, min

Time, hrs

Fig. 2 Mean waiting time for M/D/1 queue with moderate traffic.



414 BOLENDER AND SLATER

that the average value of the waiting time is 2.53 min. The mean
delay obtained by simulation is within 1.2% agreement of the ana-
lytical model. However, if we were to use the steady-state delay for
the M/ D/1 queue, the average delay would increase to 3.32 min.
In comparison, if we used the exponential service time approxima-
tion (an M/M/1 queue), its steady-state delay would be 6.64 min.
It can be shown for the steady-state case that the delay for a queue
with deterministic service times is one half that of a queue with ex-
ponentially distributed service times. The exponential service time
model is not an appropriate model for modeling the service times
for this problem.

The second strategy was to allow the aircraft to switch runways
whenever the delay on the alternate runway was less than the de-
lay on the aircraft’s preferred runway. This case was studied by
Vandevenne and Lippert’ using traffic statistics from the Dallas-
Fort Worth airport. Vandevenne and Lippert studied the reduction
in delay relative to the preferred runway case that was discussedear-
lier. Their analysis looked at the expected waiting time in the steady
state for M/ D/n queues as compared to an M/ D/1 queue. They
show that the delay for the n runway case is reduced by a factor of
approximately 1/n as compared to the single runway case. Using
this analysis as a starting point, a curve showing how the relative
delay evolves as a function of time was generated. Figure 3 shows
the delay of an M/D/2 queue relative to an M/D/1 queue. Cal-
culating the average value of the curve in Fig. 3, an improvement
of about 52% would be expected by allowing an aircraft to choose
the runway with the lowest delay for it. From Table 3, the delay
reduction achieved in the simulation by allowing aircraft to freely
switch runways is 49%. The delay per aircraft, averaged over 5000
replications, is 1.26 min/aircraft. With the mathematical model of
the M/D/2 queue, we expect to see a delay of 1.30 min/aircraft.
Vandevenne and Lippert also state that about one-half of the traffic
is expected to change runways to reduce its delay. Our simulation
shows that this is nearly the case because an average of 45% of the
traffic switched runways.

Note that we see a difference between the mathematical model
as compared to the simulation for both the M/D/1 and M/D/2
queues. We attribute the differences in the delay to our input pro-
cess model. Our simulation uses a fixed number of aircraft entering
into the system. This number is fixed to be the expected number
of arrivals for a homogeneous Poisson process within a 90-min in-
terval (the expected number of aircraft for the Poisson distribution
is N =AT). The arrival time distribution for the Nth arrival can
be shown to be a gamma distribution with mean N/ A and standard
deviation +/(N)/ . Although we expect the Nth aircraft to arrive at
time 7, it will most likely arrive within some interval T £ /(N)/A.
A result of modeling the arrival process with a fixed number of

0.68 ! ;
0.66

0.64

0.54
0.52

0.5

048 i i
0 0.5 1 15
Time, hrs

Fig. 3 Two-runway moderate-traffic case: ratio of expected delay for
unconstrained runway crossover to no crossover expected delay (time
measured from start of traffic).

arrivals means that the length of the arrival period will vary. Hence,
there is not a direct correlation between the results generated by
the simulation and the analytical model. We believe that fixing the
number of arrivals more accurately approximates the actual arrival
process as compared to modeling an arrival period with a fixed
length where the number of arrivals varies significantly. This is be-
cause the number of aircraft in an arrival rush is essentially fixed
and the daily variationsin traffic and weather cause an expansionor
contraction of the duration of the arrival rush. Our simulations con-
firm that as the number of arrivalsincreases (either due to increasing
the arrival rate or the number of runways), there will be a larger dis-
crepancy with the analytical model. In addition, simulation shows
that the fixed-incrementPoisson model better approximatesthe ana-
lytical model formulation. Using the unlimited-crossovercase with
the fixed-length Poisson process, the average delay for 5000 repli-
cations is 1.29 min/aircraft. This compares to the 1.30 min/aircraft
predicted by the analytical model.

The next approach that was implemented placed restrictions on
when an aircraft could cross over. An aircraft would be allowed to
cross over if one of the following logic statements were true: 1) the
aircraft had a lower delay on the alternate runway and the aircraft
formed a favorable sequence or 2) the scheduled time of arrival
(STA) on the alternate runway is less than the STA on the preferred
runway by a fixed amount (in this case, taken to be 60 s). A favorable
sequence is defined as a sequence that is not one of the following
pairs: {heavy, large}, {heavy, small}, or {large, small}. This essen-
tially prohibits the use of the elements in the separation matrix that
are above the diagonal. These are the elements that have the largest
value and, hence, add the most delay to the landing sequence. The
purpose of having the OR logic is that if the improvement is signi-
ficant enough, it will offset any penalty that may result from an un-
favorable sequencing. Simulation showed that the delay per aircraft
was 1.37 min/aircraft. The delay is increased by about 6 s/aircraft
as compared to the unlimited-crossovercase. The increased delays
can be because there are fewer crossovers, hence, there are aircraft
that are not landing in their optimal slot. Furthermore, there are still
instances where the sequencingis not favorable as we have defined
it; hence, the larger separations on average will require larger de-
lays. However, the number of runway crossings dropped to 23% of
the traffic.

The next scheduling algorithm studied was to assign the heavy
and small aircraft to separate runways. The large aircraft in the
stream are then scheduled to the runway that minimizes the delay
for each particular aircraft. The small aircraft were assigned to land
on the left runway and the heavy aircraft were assigned to the right
runway. The large aircraft go to the runway where the delay for that
particular aircraft is the lowest. If the delay is the same on each
runway for an aircraft then it lands on the runway where the se-
quence is defined as favorable (see preceding text). Here, we are
trying to avoid putting the aircraft behind a heavy, when it could
be placed behind a small or large, aircraft. However, if there still
is no preference after this test (e.g., a large aircraft landed on each
runway preceding the current large aircraft), then the aircraft ei-
ther goes to the runway where there are fewer aircraft or to the
runway where the last aircraft was not scheduled. For example, if
the preceding aircraft landed on the right runway, then it will land
on the left runway. The study of 5000 replications shows that the
average delay per aircraft is 1.24 min/aircraft. The improvement
in delay is significant as compared to the no-crossover case, and
a modest improvement over the unlimited-crossovercase. The im-
provement can be attributed to an increase in the capacity for each
of the runways. Because heavy and small aircraft are not in the
same stream, the large separations between these weight classes are
eliminated, hence, the capacity increases. This method, however,
had a large number of crossovers with 50% of the traffic switching
runways. The reason for this is simple. Because we know thatevery
aircraft entering the system wants to land on a preferred runway, it
stands to reason that there is a 50% probability that the assigned
runway for each heavy and small aircraft is its preferred run-
way. Therefore, one-half of the aircraft that comprise these weight
classes have to change runways to land on the appropriate runway.
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Table4 Simulation results for heavy traffic and two runways

Average delay,
Allocation strategy min/aircraft % Crossovers
No crossovers 8.3157 0
Unconstrained crossovers 6.4525 49
Constrained crossovers 6.5737 26
Separate heavy and small aircraft 5.7951 50

Furthermore, one-half of the large aircraft will switch to reduce
delays.

Heavy Traffic

This section addresses the problem of what occurs in the two-
runway case when the airport is operating above capacity. An aver-
age arrival interval of 90 min is considered, consistent with earlier
cases, although rushes with an arrival rate with this intensity typ-
ically will last no longer than 15-20 min. The average delays for
a numerical simulation consisting of 5000 replications with 216
aircraft arriving during the arrival period (an arrival rate of 144 air-
craft/h) are givenin Table 4. The schedulingalgorithmsare the same
as considered for the moderate traffic case.

The no-crossovercase is again the worst-case scenario to which
all other scheduling methods are compared. The mean delay for the
M/ D/1 queue with an arrivalrate of 48 aircraft/h and a service time
of 82.8 s is 7.4027 min/aircraft. The delay found from numerical
simulation was 8.32 min/aircraft. The 95% confidence interval half-
width for the 5000 replications was found to be 0.06 min.

The second approach is the unconstrained crossover case where-
by the aircraft moves from its preferred runway to its alter-
nate runway if its delay would improve. The simulation re-
turned a result of 6.45 min/aircraft, which is a 22% improvement
over the no-crossover case. This is significantly higher than the
6.1517 min/aircraftthatis predicted by the M/ D/2 queuing model.
This improvement is less than what was seen for the case of mod-
erate traffic. The reason for seeing less of an improvement is likely
due to the decreased spacing between the arrivals. The heavy traffic
causes longer queues to form on each runway, resulting in smaller
savings when an aircraft changes runways. Note that there is a dis-
agreement between the simulation results and the analytical model
that is due to the differences in the arrival process.

The next scheduling approach is the constrained-crossovercase
discussedin the precedingsection. As expected, the average delay is
higher than that for the unlimited-crossovercase. This strategy had
a delay 6.57 min/aircraft as compared to 6.45 min/aircraft for the
unlimited crossovers. The number of crossovers as compared to the
moderate traffic is also slightly higher. With the increase in traffic,
26% of the aircraft switched runways. This increase is associated
with the decreased mean separation in the ETA of the aircraft and
the longer queues that will form.

The final allocation process was to separate the heavy and small
traffic so that each lands on separate runways. In this case, the delay
is reduced to 5.80 min/aircraft. This is significantly less than both
the unconstrained- and no-crossover cases. This demonstrates the
importance of keeping heavy and small aircrafton separate runways
when the traffic is very heavy. The reduction in delay is attributed
to the heavy-small sequence being avoided. Even though the large
aircraft make up 70% of the total traffic, forcing the separation of
the small number of heavy and small aircraft significantly reduces
the delay as compared to the unconstrained-crosover case. This is
an indication that the scheme for reducing individual delay results
in a landing sequence that is a local and not a global optimum.

Three-Runway Allocation Problem

The three-runway caseis consideredbecause many largerairports
such as Dallas-Fort Worth and Denver Internationalhave more than
two runways that may be used simultaneously. Only heavy and
moderate traffic are considered because only minimal benefits are
realized from optimizing runway allocations for light traffic. The
most practical means of allocating runways in the light traffic case

is to land each aircraft on its preferred runway. The underlying
assumptions for the three-runway case are basically the same as for
the two-runway case. The three runways are labeled as R, L, and
C to denote the right, left, and center runways, respectively. Each
aircraftis assigneda runway using arandomdraw, with each aircraft
having an equal probability of being assigned to any of the three
runways.

Moderate Traffic

The case of a moderate traffic flow into the airport is discussed
first. Three scheduling strategies are examined. The first is the no-
crossover case, where each aircraft is assigned to its preferred run-
way, and the secondis the unlimited-crossovercase where an aircraft
is free to switch runways whenever the delay on one of the alternate
runways is lower than the delay on the preferred runway. The third
way of schedulingis to separate the aircraftby weight class, landing
heavy and small aircraft on separate runways, while assigning the
large aircraft to any of the three. This is a direct descendant of the
two-runway strategy where the heavy and small aircraft were landed
on separate runaways. For the moderate traffic case, it is assumed
that the total arrival rate is 108 aircraft/h. Initially there is no queue
and the traffic stops arriving after the 162nd arrival. The total run-
way capacity is 130 aircraft/h for the assumed traffic mix. Results
are summarized in Table 5.

The no-crossover case is again compared directly to an M/ D/1
queue that has an arrival rate of 36 aircraft/h and a service time
of 82.8 s. The analytical model predicts an expected delay of
2.5247min/aircraftovertherush period. Simulation,however, yield-
ed a delay of 2.6089 min/aircraft. The unrestricted crossover case
performed as expected. Figure 4 shows the ratio of waiting time for
an M/D/3toan M/D/1 queue over time. Note that the delay for a
single-server queue increases faster than for the three-server queue
given the same utilization. It is expected that the delay will be 35%
of the no-crossover delay. The delay for the unlimited-crossover
case is 0.7520 min/aircraft. The delay that one would expect from
the M/ D/3 queue is 0.8413 min/aircraft. The expected delay from
the analytical model is about 12% higher than what the simulation
predicts. However, it is 30% of the simulated no-crossover delay.
As before, the difference in delay can be attributed to using a fixed

Table 5 Simulation results for three runways
and moderate traffic

Average delay,
Allocation strategy min/aircraft % Crossovers
No crossovers 2.6089 0
Unconstrained crossovers 0.8119 59
Separate heavy and small aircraft 0.8324 67

0.55( ! ‘
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Fig. 4 Three-runway moderate-traffic case: ratio of expected delay for
unconstrained runway crossover to no crossover expected delay.
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Table 6 Simulation results for heavy traffic and three runways

Average delay,
Allocation strategy min/aircraft % Crossovers
No crossovers 8.4145 0
Unconstrained crossovers 5.6691 66
Separate heavy and small aircraft 4.5246 67

number of arrivals,rather than a fixed end time. One would expectto
see two-thirds of the traffic crossoverto an alternaterunway because
the probability of an aircraft having its preferred runway be the run-
way that has the lowest delay is one-third. The actual crossoverrate
was 59%, less than the 67% that would be anticipated. The third
allocation method is to land the heavy aircraft and the small air-
craft on separate runways. Large aircraft are then assigned to any of
the three runways. To be consistent with the allocation strategy for
the two-runway case, the large aircraft landed on the runway that
minimized the delay for an individual aircraft. Simulation yielded
a delay of 0.8324 min/aircraft with 67% of traffic crossing over.
This is similar to what was observed on the two-runway case with
moderate traffic, but with a very small increase in the delay.

Heavy Traffic

For heavy traffic, the arrival rate was increased to 144 aircraft/h,
which gives us 216 aircraft in the rush period. The three strategies
employed are the same as for the moderate traffic. Again, compar-
isonsare made to results obtainedusing queuing theory to predictthe
delays as well as the improvementin the delay. Table 6 summarizes
the results of this section.

For the case of no crossovers, the average delay was found from
simulation to be 8.7364 min/aircraft. This compares to the analyt-
ical model that has an average delay of 7.1426 min/aircraft. The
reason for the discrepancy is discussed in the two-runway/heavy-
traffic study. The unlimited-crossover case sees a reduction in
the delay as expected. The average delay from the simulation is
5.4203 min/aircraft with 66% of the traffic crossing over. The delay
reduction realized by allowing the aircraft to land wherever their
delay is minimized is 35%. The M/ D/3 model predicts an average
delay of 5.5834 min/aircraft. Furthermore, from Fig. 5, one would
expect the ratio of the no-crossover delay to the unconstrained-
crossover delay to be 0.73. The ratio of simulated delays is 0.67,
which varies from the analytical model.

The final strategy employed is to land the heavy and small air-
craft on separaterunways and to land the large aircrafton whichever
runway’s delay is the smallest. The delay calculated from the sim-
ulation is 4.5286 min/aircraft, with 67% of the aircraft switching
runways. As with the two-runway setup with heavy traffic, this in-
stance is similar in terms of relative performance. The separationof
the weight classes removes some of the components of the separa-
tionmatrix thatresultin large delays. As in the two-runway case, this
is even more important when the traffic is heavy because bunching
is widespread.

08 .
fﬁ

0.78 rr‘_r,f e

0.761 -

=

074l frrr' Arrival Rate = 144 acihr
072 J—’_‘_,_r'drr"rr‘f

0.66 JJIH‘ i
0

i i
10 20 30 40 50 &0 70 80 a0
Time, min

W3 /W1

[}
'
L

Fig. 5 Three-runway heavy-traffic case: ratio of expected delay for
unconstrained runway crossover to no crossover expected delay.

Conclusions

Several methods for scheduling arrival aircraft to multiple run-
ways are studied. We have shown that the transient analysis of an
M/ D/ n queue can give reasonableresults in predicting the average
delay per aircraft when the runway capacity is known. Furthermore,
significant improvements are realizable when one considers the ar-
rival rate in choosing a runway allocation strategy. The greatest
reduction in delay for both the two- and three-runway cases for
heavy traffic are obtained by separating traffic such that the heavy
and small weight classes do not interact. For more moderate traffic,
one may either split the traffic by weight class or crossover when
there is an improvementin delay. Light traffic simply is scheduledto
the preferred runway for the aircraft because the average separation
is large enough that most aircraft are likely to be expedited.
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