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Evaluation of Scheduling Methods for Multiple Runways
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Several scheduling strategies are analyzed to determine the most ef� cient means of scheduling aircraft when
multiple runways are operational and the airport is operating at different utilization rates. Simulation data are
compared for two- and three-runway scenarios to results from queuing theory for an M/D/n queue. The direction
taken, however, is not to do a steady-state, or equilibrium, analysis because this is not the case during a rush
period at a typical airport. Instead, a transient analysis of the delay per aircraft is performed. It is shown that the
scheduling strategy that reduces the delay depends on the density of the arrival traf� c. For light traf� c, scheduling
aircraft to their preferred runways is suf� cient; however, as the arrival rate increases, it becomes more important
to separate traf� c by weight class. Signi� cant delay reduction is realized when aircraft that belong to the heavy
and small weight classes are sent to separate runways with large aircraft put into the best landing slot.

Introduction

T HE analysis of aircraft scheduling techniques for airports with
multiple runways is becoming more important with the evolu-

tion in the design of new airports, such as Denver International, that
have the capability to land several aircraft independently on sev-
eral runways. Therefore, new techniques for scheduling to multiple
runways are needed to improve on the traditional � rst-come-� rst-
serve (FCFS) technique generally employed. New computer-based
tools such as the Center TRACON Automation System (CTAS)
will give air traf� c controllers a tool that gives them accurate
aircraft state information and can assist them in their scheduling
duties.1 The intent of this paper is to present and compare several
scheduling methods to show the best means to reduce the delay per
aircraft.

In a multiple-runway airport, traf� c from different directions is
assigned a preferred runway based on the geometric relation of the
approach geometry to a runway. Previous efforts by Vandevenne
and Lippert2 have shown that signi� cant delay reduction is possible
for multiple runways if the aircraftare allowed to crossover without
penalty.Using steady-statequeuingtheory,Vandevenneand Lippert
show that the delay should be reduced by a factor of approximately
1/ n for n runways when compared to a single runwaycase. It would
be expected then that 1 ¡ 1/ n% of the aircraft would be switching
from their preferred runway. A delay threshold can be added to
reduce the number of crossovers. The delay threshold is a lower
bound on which the delay on the alternate runway must be reduced
for the aircraft to cross to that runway. As a result of that threshold,
there is a drop in the number of crossovers and a corresponding
increase in the delay.

The approach taken in this paper is to study several different
techniques for scheduling aircraft to multiple runways. Numerical
simulation is used to determine the effectiveness of several sim-
ple runway allocations. These results are compared to results from
queuing theory. Because a typical arrival rush at an airport is fairly
short, we are interested in looking at the transient state of the queue
and how the waiting time or delay evolves during a rush period.
This simulates the queuing dynamics during a rush period at a typ-
ical airport that is initially operating with light arrival traf� c. It is
shown that the best methodof allocatingrunwayswhen the airport is
operating either near or above capacity is to separate the heavy and
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small aircraft as much as possible. However, if the traf� c is light, it
is suf� cient to land the aircraft on their preferred runways.

Scheduling Problem
The aircraft scheduling problem can be de� ned as a procedure

that is “to plan automatically the most ef� cient landing order and to
assign optimally spaced landing times to all arrivals,given the times
the aircraftare actuallyarrivingat theAir Route Traf� c ControlCen-
ter (ARTCC).”1 This de� nition may sound modest, but there are
some underlying attributes of the scheduling problem that make it
very dif� cult. The arrivaltimesof the aircraftinto the systemare ran-
dom. Over short periodsof time, the arrival process can be modeled
as a homogeneousPoissonprocess.However, if one were to observe
arrivalsat an airport for an entireday, one would see that the number
of arrivals varies from hour to hour. There are periodsof time where
there are very few arrivals and periods of time where the incoming
traf� c is heavy enough that the airport is operating at its capacity.

An importantpoint regardingthearrivalschedulingproblemis the
classi� cation of aircraft into different weight classes. The interair-
craft separationbetween two aircraft is dependent on the respective
weight classes of the aircraft. In practice, we generally deal with
three weight classes that we describeas heavy, large, and small. The
Federal Aviation Administration (FAA) has speci� ed a separation
matrix that gives required minimum distance separations between
these classes of aircraft. These separations arise from the consider-
ation of wake vortices, speed differences, etc. The nominal matrix
used is shown in Table 1.

The matrix in Table 1 may vary dependingon winds, weather, etc.
To � nd the proper separation for a pair of aircraft, one simply goes
to the appropriate row for the leading aircraft, then to the column
for the weight class of the trailing aircraft.

Analytical Models
To predict the amount of delay that an aircraft can expect for

a given traf� c mix, arrival rate, and airport capacity, two standard
queuing models are considered. The � rst model has deterministic
service times, and the second considersservice times that are expo-
nentially distributed. Rather than restricting ourselves to a steady-
state analysis, a study of the transientqueue dynamics is performed.
The motivation for doing a transient analysis is that in actual traf� c
at hub airports, arrival traf� c is concentrated in short periods that
last 60–90 min. As such, the system never reaches a steady-state
condition. There are times where the peak arrival rate of aircraft
will be greater than the runway capacity. The arrival rate preceding
the rush period is usually low enough that the aircraft are typically
not delayed due to the large interarrival times between them, and
so the method of landing aircraft on their preferred runways will be
more than adequate.
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Table 1 Separation matrix
in nautical miles

Trail aircraft

Lead aircraft Heavy Large Small

Heavy 4 5 6
Large 3 3 4
Small 3 3 3

Deterministic Service Times

In constructinga mathematicalmodel for the schedulingproblem,
we need to make some simplifyingassumptions.The � rst is that the
arrivalsare to be modeledaccordingto a homogeneousPoissonpro-
cess with an arrival rate k . The Poisson process has a mean number
of arrivals in the time period [t , t + D t] equal to k D t . Furthermore,
the interarrival times of the aircraft have an exponentialdistribution
with a mean of 1/ k . It is further assumed that each server has a con-
stant service time Ts . This queuingsystem is then said to be M / D / n
(Ref. 3), where M denotes that the interarrival times are Markovian
or memoryless, D denotes that the service times are deterministic
or constant,and n servers are operating in parallel.Also, the servers
are fed by a single queue.

The service time may be taken to be constantby probabilistically
weighting the required separation times within the separation ma-
trix. We assume that the traf� c mix (i.e., the relative proportion of
differentweight classes) is known and that the probabilityof an air-
craft entering the queue being a member of a particularweight class
is given by this relative proportion. By assigning a � xed service
time to all aircraft in this manner, it is assumed that any delay re-
sults from the randomnessof the arrival times. To calculatea service
time (and,hence,a runwaycapacity) from the separationmatrix, one
only needs to know the traf� c mix and the separation matrix. The
average service time is Ts =PT

m SPm , where Pm =[PH PL PS ]T is
a vector of the probabilities that the aircraft is a heavy, large, or
small, respectively, and S is the separation matrix. Let l repre-
sent the runway capacity. The capacity of a single runway is then
l =1/ Ts . For example,if the traf� c mix is Pm =[.2 .7 .1]T , and the
aircraft have a common landing speed of 150 kn, then l =43.5 air-
craft/h and Ts =82.8 s. For analysis purposes, using a constant Ts

simpli� es the mathematical model signi� cantly. As will be shown,
this assumption does not adversely affect the numerical results.
The constant service time used is a function of the assumed traf-
� c mix and the elements of the separation matrix. An alternate ap-
proach that utilizes random service times is discussed in the next
section.

To analyze the delay buildup during a rush period, one needs to
study the transient probabilities of the queuing process. The time-
varyingequationsare taken fromTijms.4 The derivationof the prob-
abilities is based on the following observations: a customer in ser-
vice at time t will have left service at time t + Ts . The customers in
the system at the time t + Ts will be those that entered during the
increment Ts as well as those that were in the queue at time t .

De� ne A(Ts ) to be the number of arrivals in the interval
[t, t + Ts ]. Furthermore, let N (t) be the number in the system at
time t , and let Pj (t ) = P[N (t ) = j] denote the probability that j
customers are in the system at time t . The event that there are j
aircraft in the system is a union of the events that there are j arrivals
when either the servers are either full, empty, or less than full and
the queue is empty or there are j ¡ 1 arrivals when there is a queue
of length 1, etc. Using this detail, we have the following expression
for the probability of the number of aircraft in the system

Pj (t + Ts) = P[A(Ts) = j j N (t ) = 0]P0(t)

[ . . . [ P[A(Ts) = j j N (t ) = n]Pn (t)

[ P[A(Ts) = j ¡ 1 j N (t) = n + 1]Pn + 1(t )

[ . . . [ P[A(Ts) = 0 j N (t) = j + n]P j + n(t ) (1)

Because the number of arrivals in the interval [t, t + Ts] and the
number in the queue are independent events, the conditional prob-
abilities can be written as

P[A(Ts ) = m j N (t ) = k] = P[A(Ts ) = m]

= e ¡ k Ts
£
( k Ts)

m ê m!
¤

(2)

The probability given in Eq. (2) is simply the probability that there
are m Poissonarrivalsin an intervalof length Ts . SubstitutingEq. (2)
into Eq. (1) and simplifying yield

P j (t + Ts) =
nX

k =0

Pk(t )e
¡ k Ts

( k Ts) j

j !

+
n + jX

k = n + 1

Pk (t )e ¡ k Ts
( k Ts ) j ¡ k + n

( j ¡ k + n)!
, j = 0, 1, 2, . . . (3)

This gives us an in� nite set of equations that can be solved at
discrete times. Setting t =kTs and de� ning the probability vector,
P̄(k) =P̄(kTs) = [P0(k)P1(k) . . .]T , Eq. (3) can be written as the
in� nite dimensional difference equation:

P̄(k) = FP̄((k ¡ 1)) (4)

where F is given hereafter for the n =2 case as

e ¡ k Ts
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(5)

The solution to this set of equations is

P̄(k) = Fk P̄(0) (6)

This set can be solved approximately by initializing the time when
the queue is empty (P̄(0) =[1 0 0 ¢ ¢ ¢ ]T ) and choosing a suf� -
ciently large dimension of F such that the signi� cant probabilities
of the system are captured.

Once the probabilities are determined, the mean number in the
system at any time incrementk can be calculated.The mean number
in the system is de� ned as

m(k) =
1X

j =0

j Pj (k)

The mean number in the system at any time k may be broken up
into two components, those found in service ms (k) and those in the
queue awaiting service m Q (k). Hence, m(k) =ms(k) + mQ (k). The
mean number in service can be found in Ref. 3 to be

n ¡ 1X

j =0

j Pj (k) + n
1X

j = n

Pj (k) (7)

The � rst summation in Eq. (7) arises because if the number of cus-
tomers in the system is less than the number of servers, then all
customers are being served. The second summation exists because
if there are more customers in the system than there are servers, then
all servers will be busy. The resulting mean number in the queue is
then

m Q (k) =
1X

j = n

( j ¡ n) Pj (k) (8)

After we use Eq. (8) and truncate the upper summation limit to
NF , where NF is the dimension of F used for calculation, the mean
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number in the queuecan be calculated.The expectedwaiting time or
delay as a functionof time can be found by simply applying Little’s
formula (see Ref. 3). Mathematically, Little’s formula is L = k W
where L is the length of the queue, k is the arrival rate of customers
into the system, and W is the waiting time in the queue.The waiting
time in the queue then becomes

WQ(k) =
1
k

m Q (k) =
1
k

NFX

j =n

( j ¡ n)P j (k) (9)

Exponential Service Times

A secondmodel that has beenusedby some authors to analyze the
arrival schedulingproblem is one where the service times are expo-
nentiallydistributedwith a mean equal to the service time calculated
from the separation matrix. A queue that has Poisson arrivals, ex-
ponential service times, and n servers is referred to as an M / M / n
queue.3 The resulting model gives rise to the Kolomogrov differ-
ential equations, which describe a birth and death process for an n
server queue with a constant arrival rate k j = k for all j and service
rates l j .

The birth and death differential equations5 are then

ÇP j (t ) = k j ¡ 1 Pj ¡ 1(t ) ¡ ( k j + l j )P j (t ) + l j + 1 Pj + 1(t ) (10)

where Pj (t) is the probabilityof therebeing j aircraft in the system,
ÇPj (t ) is the derivative with respect to time of P j (t ), and k j and l j

are the arrival and service rates, respectively.In addition, l j is given
by

l j =

»
j l j = 0, 1, . . . , n ¡ 1

n l j ¸ n
(11)

Because Eq. (10) results in an in� nite set of � rst-order differen-
tial equations, it can be written in the form P(t ) = GP(t), with
P(t ) =[P0 P1 ¢ ¢ ¢ ]. The matrix G in this case is a tri-diagonalma-
trix of the form (for n =2)

2

6664

¡ k l 0 0 0

k ¡ ( k + l ) 2l 0 0

0 k ¡ ( k + 2 l ) 2 l 0
...

. . .
. . .

. . .
. . .

3

7775
(12)

Again, we are only able to approximate the in� nite set of differen-
tial equations by a � nite set when solving the system numerically.
Hence, one needs to select the dimensionof G large enough that the
important features of the queuing dynamics are realized.

The solution to the differentialequation P(t ) =GP(t ), P(0) =P0

is

P(t ) = eGt P0 (13)

Once the probabilities are found according to Eq. (13), the mean
number in the queue and, hence, the mean waiting time in the queue
are found using Eq. (9) and replacing k with t . A comparison of the
numerical results for the deterministic service time model and the
exponential service time model shows that the exponential model
yields a signi� cantly greater average delay than that experienced
by the deterministic service model. (Note that in Fig. 1, the mean
exponentialservice time is exactly equal to the deterministicservice
time.) The reason for this difference is the large standard deviation
of the exponential distribution. Consider an exponential distribu-
tion with rate a . The mean service time is then 1/ a and the standard
deviation is 1/ a . Note that for a purely deterministic service time,
the standard deviation is zero. If we consider the service times as
determined by the separation matrix, the standard deviation of ar-
rival traf� c can be easily computed. After converting the separation
matrix from distances to speeds using a common approachspeed of
150 kn and the given traf� c mix, the average service time is 82.8 s
with a standard deviation of 19.3 s. This is compared to 82.8 s for
the exponential distribution. The large variance of the exponential

Fig. 1 Mean waiting times for M/D/2 and M/M/2 queues (¸ = 72 air-
craft/h).

distribution introduces a much wider range of service times than
that which occurs in practice. The effect of these service times is to
cause additional buildup in the queue; therefore, additional delay is
introduced into the system that is signi� cantly larger than that ob-
served in simulation.Simulation results presented in the succeeding
sections validate the hypothesis that the deterministic service time
assumption is a reasonable model for analytical studies, especially
in comparison to the exponential model.

Comparison of Runway Allocation Strategies
Because of the complexnature of schedulingarrival aircraft, sim-

ulation providesa valuable tool to determine the feasibilityof a par-
ticular scheduling algorithm. In this section, we discuss the merits
and drawbacks for several runway allocation methods. The two-
runway allocationproblemwill be discussed, followed by the three-
runway problem. Three different traf� c densities will be analyzed
for each problem: a period of light traf� c (two-runway case only),
a period of moderately heavy traf� c where the airport is operating
near, but below capacity, and a period where the traf� c is heavy
enough that the airport is operating above capacity. The purpose is
to show that selection of a given runway allocation method varies
with the arrival rate of aircraft into the airport.

Two-Runway Allocation Problem

The two-runway problem is one that is quite common. Runways
that operate independentlyof one another have suf� cient separation
between their centerlines such that aircraft landing simultaneously
can be treated independently.

It is assumed for all scheduling strategies that the aircraft arrive
in two different streams. Each arrival stream’s estimated times of
arrival (ETA) are modeled by a Poisson distribution with a mean
of k aircraft per hour per runway, which gives a total arrival rate
of 2k aircraft/h using the reproductiveproperty of the Poisson pro-
cess. For each arrival stream, there is a preferred runway that an
aircraft desires to land on. Because of the common arrangement of
parallel runways, we will nominally call the runways left and right
or L and R. The arrival direction and, hence, the preferred runway,
was determined by a random draw. The capacity of each runway is
approximately 43.5 aircraft/h using the separation matrix and (for
simplicity) a common approach speed of 150 kn. The traf� c mix
is assumed to consist of 70% large aircraft, 20% heavy, and 10%
small (this roughly approximates the traf� c mix observed in most
U.S. traf� c.) The performanceindex to be consideredis the average
delay of each aircraft becauseminimizing the averagedelay per air-
craft should result in a maximum throughput in a given time. The
delay per aircraft is measured with respect to its estimated time of
arrival. It is further assumed that each aircraft can be slowed down
as much as needed to meet the minimum spacing requirements of
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the separationmatrix. The � ight time to both runways is assumed to
be identical.The � rst aircraft landingon each runway is constrained
to land at its nominal time of arrival. Each arrival period consists
of a � xed number of aircraft and is on average 90 min long, as this
the typical duration of an arrival period at a hub airport. The results
presentedare the averagedelays for 5000 replications.This number
of replications was chosen to allow the delays to converge and to
obtain a 95% con� dence interval that was less than 0.1 min.

Light Traf� c

For the light-traf� c case, the total arrival rate is taken to be 32 air-
craft/h (or 16 aircraft/h/runway). Each aircraft, on entry into the
system, is placed at the end of the queue. Rearrangement of the
queued aircraft was not performed; therefore, the only options are
either to assign each aircraft to its preferred runway or to let it land
on an alternaterunway.We compared three means of allocatingrun-
ways for the arrival traf� c. The � rst was to land each aircraft on its
preferred runway. This is the easiest schedulingalgorithm to imple-
ment because no decision is made to cross runways. Furthermore,
this is a baseline that allows us to later show improvements in delay
as compared to this algorithm. By constraining the aircraft to land
on their preferred runways, the queue is considered as two sepa-
rate queues, each feeding a particular server. The second method is
to allow an aircraft to switch from its preferred runway whenever
the aircraft’s delay on the alternate runway is less than its delay on
its preferred runway. This plan will be referred to as unconstrained
crossovers.Note that this is equivalent to the case of a single queue
feeding two servers in parallel. The third allocation strategy is to
land the heavy and small aircraft on runways that are designated
for each weight class and to place the large aircraft on the runway
where the delay for it is the smallest. The fourth method, which
is not used in the light-traf�c case, attempts to reduce the amount
of crossover traf� c. Because crossovers increase the workload on
the controllers, it is desirable to reduce delay without imposing a
signi� cantly higher workload on them. Therefore, this particularal-
gorithm permits the aircraft to cross over to the alternate runway if
one of two conditions were satis� ed: 1) the aircraft’s delay on the
alternate runway is less than on the preferred and the sequence was
de� ned to be favorableor 2) the aircraft’s delay on the alternate run-
way is less than that on its preferred runway by some predetermined
amount. A favorablesequence is one that tries to group aircraft with
the minimal elements of the separation matrix. For example, a fa-
vorable sequence would be to land a small aircraft ahead of a heavy
aircraft; however, the converse would not be a favorable sequence.

The results of the � rst three approachesare given in Table 2. The
improvementsmade by allocatingrunwaysare70% better than if the
aircraft were constrained to land on their preferred runways. How-
ever, from an operational point of view, there is no real advantage
for optimizing the landing sequence to reduce the delay per aircraft
because the delay is already small. This is because the average sep-
arationsbetweenarrivals are large, hence, there is little tendencyfor
bunching to occur.

To gain con� dence in the simulation, and to compare the validity
of the analyticalmodel of the precedingsection,we can compare the
� rst two cases above to an M / D / 1 and an M / D / 2 queue, respec-
tively. To calculate the expected delay per aircraft over a given time
period, the average value of the waiting time [Eq. (9)] is needed.
The averagevalueof the expectedwaiting time curveover N service
intervals is then

W̄ =
1
N

NX

k = 0

W (k) (14)

Table 2 Simulation results for light traf� c and two runways

Average delay, Standard deviation,
Allocation strategy min/aircraft min/aircraft

No crossovers 0.3995 0.1919
Unconstrained crossovers 0.1180 0.0848
Separate heavy/small aircraft 0.1647 0.0898

For the allocation strategies used in Table 2, the � rst two repre-
sent cases that can be handled analytically using our earlier results.
Using Eq. (14) for an M / D /1 queue with an arrival rate of 16 air-
craft/h and a service time of 82.8 s, the average delay is found to be
0.3955 min/aircraft, which agrees with the no-crossover case. The
unlimited-crossovercase shows the same trend. The predicteddelay
using an M / D / 2 queue is 0.1174 min/aircraft,whereas the simula-
tion produced a delay of 0.1180 min/aircraft. These differences are
small and indicate that averaging the simulation over 5000 trials is
adequate for the light-traf� c case.

Moderate Traf� c

The case where there is moderately heavy traf� c allows us to in-
vestigate what happens when the airport is operating under a fairly
high arrival rate, but is still not at its capacity. This allows for fairly
tight bunching to occur, as well as periods where the traf� c may be
light for several minutes. It is assumed that the total arrival rate is
72aircraft/h, puttingtheairportat about84%capacity.Four different
scheduling algorithms are investigated, which can be summarized
as follows. The � rst method is to land each aircraft on its preferred
runway, that is, no crossovers allowed. This serves as a baseline
strategy and is used to determine the reduction in delay. The second
strategy allows an aircraft to cross from its preferred runway to the
alternate runway if the aircraft can land at an earlier time. The � rst
two strategies correspond to the analytical models that are consid-
ered. The strategies where traf� c is separated by weight class and
where crossovers are permitted under favorable conditions are also
addressed. Results for these four sequencing strategies are summa-
rized in Table 3.

The � rst scheduling strategy employed was to restrict each in-
coming aircraft to land on its preferred runway. This is employed
as a baseline to � nd improvements in the runway balance (i.e., are
the same amount of aircraft landing on each runway?) and in the
delay per aircraft.The aircraft, as stated, entered from the appropri-
ate direction and then were scheduled to the correspondingrunway.
Using an arrival stream consistingof 108 aircraftand averagingover
5000 replications,the mean delay was 2.56 min/aircraft. For analyt-
ical purposes, this is modeled by an M / D / 1 queue with the arrival
rate equal to 36 aircraft/h and a constant service time of 82.8 s. The
expected delay curve is shown in Fig. 2. Using Eq. (14), we � nd

Table 3 Simulation results for moderate traf� c
and two runways

Average delay,
Allocation strategy min/aircraft % Crossovers

No crossovers 2.5629 0
Separate heavy/small 1.2371 50
Unconstrained crossovers 1.2581 45
Constrained crossovers 1.3660 23

Fig. 2 Mean waiting time for M/D/1 queue with moderate traf� c.
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that the average value of the waiting time is 2.53 min. The mean
delay obtained by simulation is within 1.2% agreement of the ana-
lytical model. However, if we were to use the steady-state delay for
the M / D /1 queue, the average delay would increase to 3.32 min.
In comparison, if we used the exponential service time approxima-
tion (an M / M / 1 queue), its steady-state delay would be 6.64 min.
It can be shown for the steady-state case that the delay for a queue
with deterministic service times is one half that of a queue with ex-
ponentially distributed service times. The exponential service time
model is not an appropriate model for modeling the service times
for this problem.

The second strategy was to allow the aircraft to switch runways
whenever the delay on the alternate runway was less than the de-
lay on the aircraft’s preferred runway. This case was studied by
Vandevenne and Lippert2 using traf� c statistics from the Dallas–

Fort Worth airport. Vandevenne and Lippert studied the reduction
in delay relative to the preferred runwaycase that was discussedear-
lier. Their analysis looked at the expectedwaiting time in the steady
state for M / D / n queues as compared to an M / D / 1 queue. They
show that the delay for the n runway case is reduced by a factor of
approximately 1/ n as compared to the single runway case. Using
this analysis as a starting point, a curve showing how the relative
delay evolves as a function of time was generated. Figure 3 shows
the delay of an M / D /2 queue relative to an M / D / 1 queue. Cal-
culating the average value of the curve in Fig. 3, an improvement
of about 52% would be expected by allowing an aircraft to choose
the runway with the lowest delay for it. From Table 3, the delay
reduction achieved in the simulation by allowing aircraft to freely
switch runways is 49%. The delay per aircraft, averaged over 5000
replications, is 1.26 min/aircraft. With the mathematical model of
the M / D /2 queue, we expect to see a delay of 1.30 min/aircraft.
Vandevenne and Lippert also state that about one-half of the traf� c
is expected to change runways to reduce its delay. Our simulation
shows that this is nearly the case because an average of 45% of the
traf� c switched runways.

Note that we see a difference between the mathematical model
as compared to the simulation for both the M / D /1 and M / D / 2
queues. We attribute the differences in the delay to our input pro-
cess model. Our simulation uses a � xed number of aircraft entering
into the system. This number is � xed to be the expected number
of arrivals for a homogeneous Poisson process within a 90-min in-
terval (the expected number of aircraft for the Poisson distribution
is N = k T ). The arrival time distribution for the N th arrival can
be shown to be a gamma distribution with mean N / k and standard
deviation

p
(N ) / k . Although we expect the N th aircraft to arrive at

time T , it will most likely arrive within some interval T §
p

(N ) / k .
A result of modeling the arrival process with a � xed number of

Fig. 3 Two-runway moderate-traf� c case: ratio of expected delay for
unconstrained runway crossover to no crossover expected delay (time
measured from start of traf� c).

arrivals means that the length of the arrival period will vary. Hence,
there is not a direct correlation between the results generated by
the simulation and the analytical model. We believe that � xing the
number of arrivals more accurately approximates the actual arrival
process as compared to modeling an arrival period with a � xed
length where the number of arrivals varies signi� cantly. This is be-
cause the number of aircraft in an arrival rush is essentially � xed
and the daily variations in traf� c and weather cause an expansionor
contractionof the duration of the arrival rush. Our simulations con-
� rm that as the numberof arrivals increases(eitherdue to increasing
the arrival rate or the number of runways), there will be a larger dis-
crepancy with the analytical model. In addition, simulation shows
that the � xed-incrementPoissonmodel better approximatesthe ana-
lytical model formulation.Using the unlimited-crossovercase with
the � xed-length Poisson process, the average delay for 5000 repli-
cations is 1.29 min/aircraft. This compares to the 1.30 min/aircraft
predicted by the analytical model.

The next approach that was implemented placed restrictions on
when an aircraft could cross over. An aircraft would be allowed to
cross over if one of the following logic statements were true: 1) the
aircraft had a lower delay on the alternate runway and the aircraft
formed a favorable sequence or 2) the scheduled time of arrival
(STA) on the alternate runway is less than the STA on the preferred
runwayby a � xed amount(in this case, taken to be 60 s). A favorable
sequence is de� ned as a sequence that is not one of the following
pairs: {heavy, large}, {heavy, small}, or {large, small}. This essen-
tially prohibits the use of the elements in the separation matrix that
are above the diagonal. These are the elements that have the largest
value and, hence, add the most delay to the landing sequence. The
purpose of having the OR logic is that if the improvement is signi-
� cant enough, it will offset any penalty that may result from an un-
favorablesequencing.Simulation showed that the delay per aircraft
was 1.37 min/aircraft. The delay is increased by about 6 s/aircraft
as compared to the unlimited-crossovercase. The increased delays
can be because there are fewer crossovers, hence, there are aircraft
that are not landing in their optimal slot. Furthermore, there are still
instances where the sequencing is not favorable as we have de� ned
it; hence, the larger separations on average will require larger de-
lays. However, the number of runway crossings dropped to 23% of
the traf� c.

The next scheduling algorithm studied was to assign the heavy
and small aircraft to separate runways. The large aircraft in the
stream are then scheduled to the runway that minimizes the delay
for each particular aircraft.The small aircraft were assigned to land
on the left runway and the heavy aircraft were assigned to the right
runway. The large aircraft go to the runway where the delay for that
particular aircraft is the lowest. If the delay is the same on each
runway for an aircraft then it lands on the runway where the se-
quence is de� ned as favorable (see preceding text). Here, we are
trying to avoid putting the aircraft behind a heavy, when it could
be placed behind a small or large, aircraft. However, if there still
is no preference after this test (e.g., a large aircraft landed on each
runway preceding the current large aircraft), then the aircraft ei-
ther goes to the runway where there are fewer aircraft or to the
runway where the last aircraft was not scheduled. For example, if
the preceding aircraft landed on the right runway, then it will land
on the left runway. The study of 5000 replications shows that the
average delay per aircraft is 1.24 min/aircraft. The improvement
in delay is signi� cant as compared to the no-crossover case, and
a modest improvement over the unlimited-crossovercase. The im-
provement can be attributed to an increase in the capacity for each
of the runways. Because heavy and small aircraft are not in the
same stream, the large separationsbetween these weight classes are
eliminated, hence, the capacity increases. This method, however,
had a large number of crossovers with 50% of the traf� c switching
runways. The reason for this is simple. Because we know that every
aircraft entering the system wants to land on a preferred runway, it
stands to reason that there is a 50% probability that the assigned
runway for each heavy and small aircraft is its preferred run-
way. Therefore, one-half of the aircraft that comprise these weight
classes have to change runways to land on the appropriate runway.
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Table 4 Simulation results for heavy traf� c and two runways

Average delay,
Allocation strategy min/aircraft % Crossovers

No crossovers 8.3157 0
Unconstrained crossovers 6.4525 49
Constrained crossovers 6.5737 26
Separate heavy and small aircraft 5.7951 50

Furthermore, one-half of the large aircraft will switch to reduce
delays.

Heavy Traf�c

This section addresses the problem of what occurs in the two-
runway case when the airport is operating above capacity. An aver-
age arrival interval of 90 min is considered, consistent with earlier
cases, although rushes with an arrival rate with this intensity typ-
ically will last no longer than 15–20 min. The average delays for
a numerical simulation consisting of 5000 replications with 216
aircraft arriving during the arrival period (an arrival rate of 144 air-
craft/h) are given in Table 4. The schedulingalgorithmsare the same
as considered for the moderate traf� c case.

The no-crossover case is again the worst-case scenario to which
all other schedulingmethods are compared. The mean delay for the
M / D / 1 queue with an arrival rate of 48 aircraft/h and a service time
of 82.8 s is 7.4027 min/aircraft. The delay found from numerical
simulationwas 8.32 min/aircraft.The 95% con� dence interval half-
width for the 5000 replications was found to be 0.06 min.

The second approach is the unconstrainedcrossover case where-
by the aircraft moves from its preferred runway to its alter-
nate runway if its delay would improve. The simulation re-
turned a result of 6.45 min/aircraft, which is a 22% improvement
over the no-crossover case. This is signi� cantly higher than the
6.1517 min/aircraft that is predictedby the M / D /2 queuing model.
This improvement is less than what was seen for the case of mod-
erate traf� c. The reason for seeing less of an improvement is likely
due to the decreased spacing between the arrivals.The heavy traf� c
causes longer queues to form on each runway, resulting in smaller
savings when an aircraft changes runways. Note that there is a dis-
agreement between the simulation results and the analytical model
that is due to the differences in the arrival process.

The next scheduling approach is the constrained-crossovercase
discussedin the precedingsection.As expected,the averagedelay is
higher than that for the unlimited-crossovercase. This strategy had
a delay 6.57 min/aircraft as compared to 6.45 min/aircraft for the
unlimited crossovers.The number of crossovers as compared to the
moderate traf� c is also slightly higher. With the increase in traf� c,
26% of the aircraft switched runways. This increase is associated
with the decreased mean separation in the ETA of the aircraft and
the longer queues that will form.

The � nal allocation process was to separate the heavy and small
traf� c so that each lands on separate runways. In this case, the delay
is reduced to 5.80 min/aircraft. This is signi� cantly less than both
the unconstrained- and no-crossover cases. This demonstrates the
importanceof keepingheavyand small aircrafton separaterunways
when the traf� c is very heavy. The reduction in delay is attributed
to the heavy–small sequence being avoided. Even though the large
aircraft make up 70% of the total traf� c, forcing the separation of
the small number of heavy and small aircraft signi� cantly reduces
the delay as compared to the unconstrained-crossover case. This is
an indication that the scheme for reducing individual delay results
in a landing sequence that is a local and not a global optimum.

Three-Runway Allocation Problem

The three-runwaycase is consideredbecausemany largerairports
such as Dallas–Fort Worth and Denver Internationalhave more than
two runways that may be used simultaneously. Only heavy and
moderate traf� c are considered because only minimal bene� ts are
realized from optimizing runway allocations for light traf� c. The
most practical means of allocating runways in the light traf� c case

is to land each aircraft on its preferred runway. The underlying
assumptions for the three-runwaycase are basically the same as for
the two-runway case. The three runways are labeled as R, L, and
C to denote the right, left, and center runways, respectively. Each
aircraftis assigneda runwayusing a randomdraw, with each aircraft
having an equal probability of being assigned to any of the three
runways.

Moderate Traf� c

The case of a moderate traf� c � ow into the airport is discussed
� rst. Three scheduling strategies are examined. The � rst is the no-
crossover case, where each aircraft is assigned to its preferred run-
way, and the secondis theunlimited-crossovercase where an aircraft
is free to switch runways whenever the delay on one of the alternate
runways is lower than the delay on the preferred runway. The third
way of schedulingis to separate the aircraft by weight class, landing
heavy and small aircraft on separate runways, while assigning the
large aircraft to any of the three. This is a direct descendant of the
two-runwaystrategywhere the heavy and small aircraftwere landed
on separate runaways. For the moderate traf� c case, it is assumed
that the total arrival rate is 108 aircraft/h. Initially there is no queue
and the traf� c stops arriving after the 162nd arrival. The total run-
way capacity is 130 aircraft/h for the assumed traf� c mix. Results
are summarized in Table 5.

The no-crossover case is again compared directly to an M / D / 1
queue that has an arrival rate of 36 aircraft/h and a service time
of 82.8 s. The analytical model predicts an expected delay of
2.5247min/aircraftover therushperiod.Simulation,however,yield-
ed a delay of 2.6089 min/aircraft. The unrestricted crossover case
performed as expected. Figure 4 shows the ratio of waiting time for
an M / D /3 to an M / D / 1 queue over time. Note that the delay for a
single-serverqueue increases faster than for the three-server queue
given the same utilization. It is expected that the delay will be 35%
of the no-crossover delay. The delay for the unlimited-crossover
case is 0.7520 min/aircraft. The delay that one would expect from
the M / D /3 queue is 0.8413 min/aircraft. The expected delay from
the analytical model is about 12% higher than what the simulation
predicts. However, it is 30% of the simulated no-crossover delay.
As before, the difference in delay can be attributed to using a � xed

Table 5 Simulation results for three runways
and moderate traf� c

Average delay,
Allocation strategy min/aircraft % Crossovers

No crossovers 2.6089 0
Unconstrained crossovers 0.8119 59
Separate heavy and small aircraft 0.8324 67

Fig. 4 Three-runway moderate-traf� c case: ratio of expected delay for
unconstrained runway crossover to no crossover expected delay.
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Table 6 Simulation results for heavy traf� c and three runways

Average delay,
Allocation strategy min/aircraft % Crossovers

No crossovers 8.4145 0
Unconstrained crossovers 5.6691 66
Separate heavy and small aircraft 4.5246 67

numberof arrivals, rather than a � xed end time. One would expectto
see two-thirdsof the traf� c crossoverto an alternaterunwaybecause
the probabilityof an aircraft having its preferred runway be the run-
way that has the lowest delay is one-third.The actual crossover rate
was 59%, less than the 67% that would be anticipated. The third
allocation method is to land the heavy aircraft and the small air-
craft on separate runways. Large aircraft are then assigned to any of
the three runways. To be consistent with the allocation strategy for
the two-runway case, the large aircraft landed on the runway that
minimized the delay for an individual aircraft. Simulation yielded
a delay of 0.8324 min/aircraft with 67% of traf� c crossing over.
This is similar to what was observed on the two-runway case with
moderate traf� c, but with a very small increase in the delay.

Heavy Traf�c

For heavy traf� c, the arrival rate was increased to 144 aircraft/h,
which gives us 216 aircraft in the rush period. The three strategies
employed are the same as for the moderate traf� c. Again, compar-
isonsaremade to resultsobtainedusingqueuingtheory to predictthe
delays as well as the improvement in the delay. Table 6 summarizes
the results of this section.

For the case of no crossovers, the average delay was found from
simulation to be 8.7364 min/aircraft. This compares to the analyt-
ical model that has an average delay of 7.1426 min/aircraft. The
reason for the discrepancy is discussed in the two-runway/heavy-
traf� c study. The unlimited-crossover case sees a reduction in
the delay as expected. The average delay from the simulation is
5.4203 min/aircraft with 66% of the traf� c crossing over. The delay
reduction realized by allowing the aircraft to land wherever their
delay is minimized is 35%. The M / D /3 model predicts an average
delay of 5.5834 min/aircraft. Furthermore, from Fig. 5, one would
expect the ratio of the no-crossover delay to the unconstrained-
crossover delay to be 0.73. The ratio of simulated delays is 0.67,
which varies from the analytical model.

The � nal strategy employed is to land the heavy and small air-
craft on separaterunwaysand to land the large aircrafton whichever
runway’s delay is the smallest. The delay calculated from the sim-
ulation is 4.5286 min/aircraft, with 67% of the aircraft switching
runways. As with the two-runway setup with heavy traf� c, this in-
stance is similar in terms of relative performance.The separationof
the weight classes removes some of the components of the separa-
tionmatrix that result in largedelays.As in the two-runwaycase, this
is even more important when the traf� c is heavy because bunching
is widespread.

Fig. 5 Three-runway heavy-traf� c case: ratio of expected delay for
unconstrained runway crossover to no crossover expected delay.

Conclusions
Several methods for scheduling arrival aircraft to multiple run-

ways are studied. We have shown that the transient analysis of an
M / D / n queue can give reasonableresults in predictingthe average
delay per aircraft when the runway capacity is known.Furthermore,
signi� cant improvements are realizable when one considers the ar-
rival rate in choosing a runway allocation strategy. The greatest
reduction in delay for both the two- and three-runway cases for
heavy traf� c are obtained by separating traf� c such that the heavy
and small weight classes do not interact. For more moderate traf� c,
one may either split the traf� c by weight class or crossover when
there is an improvementin delay.Light traf� c simply is scheduledto
the preferred runway for the aircraft because the average separation
is large enough that most aircraft are likely to be expedited.
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